Abstraction Refinement via Inductive Learning

نویسندگان

  • Alexey Loginov
  • Thomas W. Reps
  • Shmuel Sagiv
چکیده

ion Refinement via Inductive Learning Alexey Loginov, Thomas Reps, and Mooly Sagiv 1 Comp. Sci. Dept., University of Wisconsin; {alexey,reps}@cs.wisc.edu 2 School of Comp. Sci., Tel-Aviv University; [email protected] Abstract. This paper concerns how to automatically create abstractions for program analysis. We show that inductive learning, the goal of which is to identify general rules from a set of observed instances, provides new leverage on the problem. An advantage of an approach based on inductive learning is that it does not require the use of a theorem prover. This paper concerns how to automatically create abstractions for program analysis. We show that inductive learning, the goal of which is to identify general rules from a set of observed instances, provides new leverage on the problem. An advantage of an approach based on inductive learning is that it does not require the use of a theorem prover.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Refined Calculus of Inductive Construction: Parametricity and Abstraction

We present a refinement of the Calculus of Inductive Constructions in which one can easily define a notion of relational parametricity. It provides a new way to automate proofs in an interactive theorem prover like Coq.

متن کامل

SAT Based Abstraction-Refinement Using ILP and Machine Learning Techniques

ion-Refinement 1. Generate an initial abstraction function h. 2. Build abstract machine M̂ based on h. Model check M̂ . If M̂ |= φ, then M |= φ. Return TRUE. 3. If M̂ 6|= φ, check the counterexample on the concrete model. If the counterexample is real, M 6|= φ. Return FALSE. 4. Refine h, and go to step 2. SAT based Abstraction-Refinement using ILP and Machine Learning Techniques 13 Abstraction Func...

متن کامل

Automata Learning with Automated Alphabet Abstraction Refinement

Abstraction is the key when learning behavioral models of realistic systems, but also the cause of a major problem: the introduction of non-determinism. In this paper, we introduce a method for refining a given abstraction to automatically regain a deterministic behavior onthe-fly during the learning process. Thus the control over abstraction becomes part of the learning process, with the effec...

متن کامل

Advances in counterexample-guided abstraction refinement

This report is a collection of six articles on model checking in the abstraction/refinement framework. This framework is used by various techniques for tackling the state-space explosion problem that is frequently encountered in model checking. The articles collected in this report are (in order of appearance): 1. Counterexample-guided abstraction refinement. Clarke, Grumberg, Jha, Lu, Veith[2]...

متن کامل

Splitting via Interpolants

A common problem in software model checking is the automatic computation of accurate loop invariants. Loop invariants can be derived from interpolants for every path leading through the corresponding loop header. However, in practice, the consideration of single paths often leads to very path specific interpolants. Inductive invariants can only be derived after several iterations by also taking...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005